Half Year Report 2018

# THE GLOBAL MARKET FOR OFFSHORE WIND ENERGY





powered by trend:research





## Framework conditions

#### 2.2 Political/legal framework

The political and legal framework is still the main driver for renewables. German production from offshore wind rose by almost a third in the 1st half of 2018.





In December 2016 the European Commission released a new renewable energy directive.

EU countries have agreed on a new 2030 framework for climate and energy, including EU-wide targets and policy objectives for the period between 2020 and 2030. Lately, new 2030-targets have been defined or discussed:

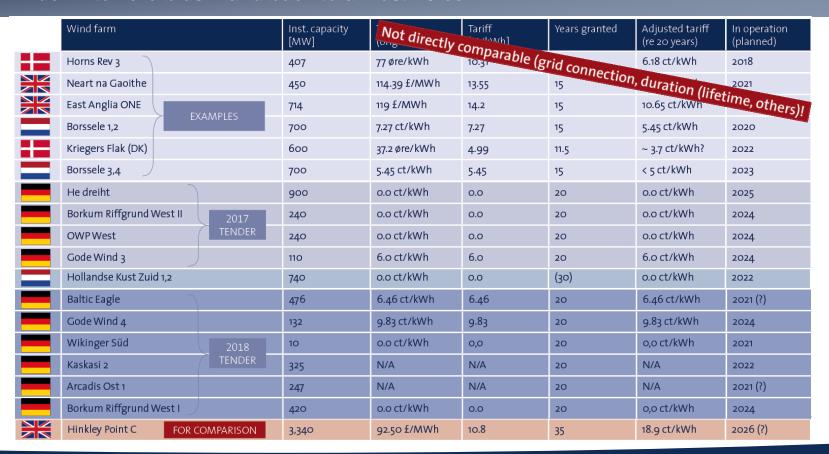
| 2030    | <b>40 %</b> → <b>45</b> % | cut in greenhouse gas emissions compared to 1990 levels                                           |  |  |  |  |  |  |  |
|---------|---------------------------|---------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| ets for | 27 % → 32 %               | share of renewable energy consumption energy savings compared with the business-as-usual scenario |  |  |  |  |  |  |  |
| Targe   | At least <b>27 %</b>      | energy savings compared with the business-as-usual scenario                                       |  |  |  |  |  |  |  |

#### Policies for 2030: The European Commission has proposed

- A reformed EU emissions trading scheme (ETS)
- New indicators for the competitiveness and security of the energy system (e.g. price differences with major trading partners, diversification of supply, and interconnection capacity between EU countries)
- First ideas on a new governance system based on national plans for competitive, secure and sustainable energy



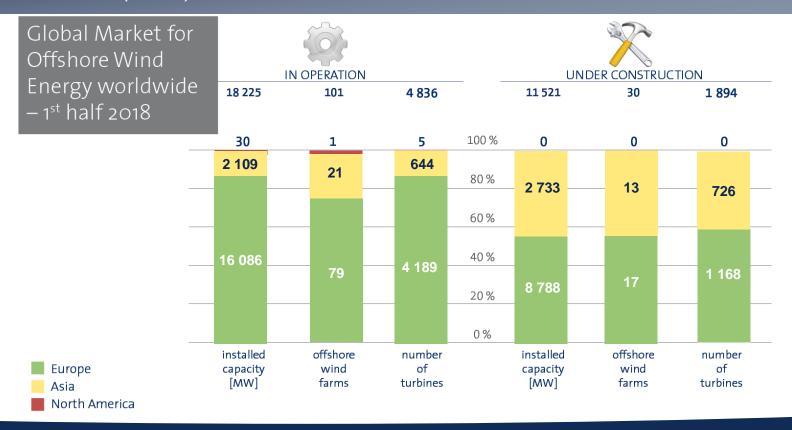







## 2. Framework conditions

## 2.2 Political/legal framework – Subsidy schemes


The results of the tenders especially in Germany were surprising: from 19,4 ct/kwH fit down to zero bids – and back to almost 10 ct/kWh.







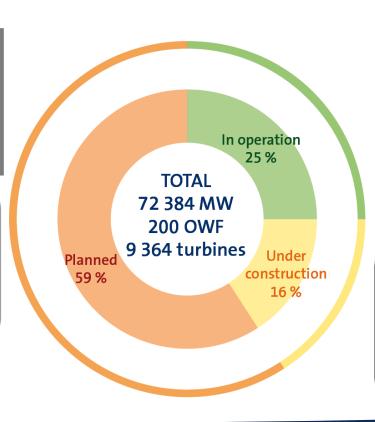
- 3.1 Installed capacity in operation and under construction by region
- Over 88 % of the worldwide totally installed capacity of around 18 GW in the 1st half 2018 is installed in Europe (approx. 16 GW), followed by Asia (11 %, approx. 2 GW) and North America (< 1 %).







### 3.3 Shares by project status


The current status of OWF in operation (25 %) and under construction is topped by a big number of planned OWF,. The size of the turbines is increasing very fast.



Global Market for Offshore Wind Energy worldwide – shares by project status –

PLANNED
42 624 MW
69 OWF
2 634 turbines\*
Ø 7.19 MW/turbine\*

 2 634 turbines are confirmed (by end of June 2018).
 The average capacity per turbine of 7:19 MW is calculated by using only the MW of those wind farms where the number of turbines are known/ published (approx. 19 GW).



IN OPERATION
18 225 MW
101 OWF
4 836 turbines
Ø 3.77 MW/turbine

UNDER
CONSTRUCTION
11 521 MW
30 OWF
1 894 turbines
Ø 6.09 MW/turbine





#### 3.4 Offshore wind farms under construction

\*without floating and pilot projects

By end of June 2018 there are worldwide 30 offshore wind farms\* either under construction (including those which are already partially generating) or under preconstruction.

| Europea | nn wind farms                 | Capacity<br>[MW] | Turbines | MW/turbine<br>(approx.) |
|---------|-------------------------------|------------------|----------|-------------------------|
|         | Norther                       | 370              | 44       | 8.4                     |
|         | Rentel                        | 309              | 42       | 7.4                     |
|         | Horns Rev 3                   | 407              | 49       | 8.3                     |
|         | Borkum Riffgrund 2            | 450              | 56       | 8.0                     |
|         | Merkur Offshore               | 396              | 66       | 6.0                     |
|         | Albatros (Hohe See Extension) | 112              | 16       | 7.0                     |
|         | Arkona                        | 385              | 60       | 6.4                     |
|         | Hohe See                      | 497              | 71       | 7.0                     |
|         | Trianel Windpark Borkum 2     | 203              | 32       | 6.3                     |
|         | Deutsche Bucht                | 269              | 32       | 8.4                     |
|         | Borssele 3&4                  | 732              | 77       | 9.5                     |
|         | Walney 3&4                    | 659              | 87       | 7.6                     |
|         | Aberdeen Bay                  | 93               | 11       | 8.5                     |
|         | Beatrice                      | 588              | 84       | 7.0                     |
|         | East Anglia ONE               | 714              | 102      | 7.0                     |
|         | Hornsea Project One           | 1 218            | 174      | 7.0                     |
|         | Hornsea Project Two           | 1 386            | 165      | 8.4                     |
|         | 17 wind farms                 | 8 788            | 1 168    | 7.5                     |

| Asian wind farms<br>(including near shore farms) |                                   | Capacity<br>[MW] | Turbines | MW/turbine<br>(approx.) |
|--------------------------------------------------|-----------------------------------|------------------|----------|-------------------------|
| *3                                               | Fuqing Xinghua Bay 1 1)           | 79               | 14       | 5.6                     |
| *3                                               | Guodian Zhoushan Putuo            | 252              | 63       | 4.0                     |
| *3                                               | Longyuan Putian Nanri Island 1 1) | 200              | 40       | 5.0                     |
| *3                                               | SPIC Binhai North Phase 2         | 400              | 100      | 4.0                     |
| *1                                               | Jiangsu Longyuan Chiang Sand      | 300              | 75       | 4.0                     |
| *1                                               | Laoting Bodhi Island              | 300              | 75       | 4.0                     |
| *3                                               | Longyuan Jiangsu Dafeng           | 200              | 80       | 2.5                     |
| *)                                               | Zhuhai Guishan                    | 120              | 37       | 3.2                     |
| *3                                               | Dongtai Four                      | 302              | 75       | 4.0                     |
| *1                                               | SPIC Jiangsu Dafeng               | 300              | 75       | 4.0                     |
| # <b>O</b> .                                     | Southwest Offshore Demonstration  | 60               | 22       | 2.7                     |
| *                                                | Formosa OWF Phase 1&2 1)          | 120              | 20       | 6.0                     |
| *                                                | Khai Long Phase 1 1)              | 100              | 50       | 2.0                     |
|                                                  | 13 wind farms                     | 2 733            | 726      | 3.9                     |
| 1 poor shore wine                                |                                   |                  |          |                         |

¹ near shore wind farm

partially generating under construcion pre-construcion





#### 3.4 Offshore wind farms under construction

\*without floating and pilot projects

Breakdown by country shows, that turbine sizes differ, especially to "mature" markets.









# 4. Opportunities and risks

The global market for offshore wind energy is less fraught with risk then 2 – 3 years before, but still dominated by political and technological risks



## **Opportunities** (overview)

- ✓ Technological developments (higher turbine output, new foundation types, ...)
- ✓ Increase of further cost reduction potentials
- ✓ Sector coupling, wind2power, e-mobility, other sectors
- ✓ Rising electricity prices and CO₂-certificate prices
- ✓ Growth opportunities of the global offshore wind market
- ✓ M&A opportunities due to consolidation
- ✓ Growth opportunities in "following" markets, e.g. O&M
- ✓ On the long run: Repowering and Dismantling
- ✓ Green PPA potentials

#### Risks (overview)

- Political frameworks, especially regarding subsidy schemes, targets and grid extension
- Auctions with a high number of speculative parameters such as electricity and CO2prices in 10 to 30 years etc.
- Delayed withdrawal from energy production from fossil fuels or nukes
- Rising water depths and distances from the shore, higher O&M-costs
- Competitive pressure due to consolidation/ concentration
- Increasing interest rates
- Missing/delayed market maturity of the technological developments





## 5. Conclusion: Trends and Outlook

The global Offshore Wind market is (still) in a strong upturn. The installed total capacity amounts to 18.2 GW in 1<sup>st</sup> half 2018 – increase of 2.1 GW compared to 2017.



#### Political framework:

- Still depending on the political targets, grid connection and extension (off- and onshore) as well as environmental regulations
- Tenders changed the European markets in 2017 dramatically, resulting in zero bids

#### Technologies:

- Industry is focusing competition on the first turbine over 10 MW (e.g. GE with first announced 12-MW-turbine Haliade X, MHI Vestas with first 8 MW turbine operating in a commercial wind farm (Borkum Riffgrund 2))
- New or "reborn" foundation types like suction bucket, gravity, or floating foundations are challenging the "old" foundation industry
- Greater water depths an important driving factor

#### Challenges:

- Political stillstand is leading to less workload and therefore problems up to solvency challenges
- Many smaller market participants have left the market during the last 12 months, returning to their roots or other businesses or just giving up





## 5. Conclusion: Trends and Outlook

The main topic of the last year cost reductions forced by the "zero bids" are still a key topic. The industry tries to develop international markets outside of Europe.



#### Costs and consolidation:

- The industry turned its focus to their O&M expenditures
- Particularly important for wind farms with high distances to the coast and in greater water depths
- As bidder still an enormous need for cost effective structures (production, transport, installation) and a good track-record to be successful.

#### Outlook:

- The Best-Case-Scenario still assumes a high market dynamic up to 250 300 GW in 2030
- Premises among others cost reduction potentials, (further) emerging and developing of new markets
  - e.g. Taiwan, Japan, USA etc
  - new technologies or applications like P2G, P2L, sector coupling, storage solutions
- Further premises rising energy prices, phase out of nuclear and coal, new ETS
- Green PPA part of the game, leading the industry to an ordinary market







www.trendresearch.de www.windresearch.de www.contracting-markt.de

www.evu-berater.de www.konzessionen-deutschland.de



## wind:research powered by trend:research

## Contents





- 1. Introduction/Methodology
- 2. Framework conditions Offshore Wind Energy
- 3. Status Quo Offshore Wind Energy 1st half of 2018
- 4. Opportunities and Risks
- 5. Conclusion: Trends and Outlook





# Introduction/Methodology

## 1.1 Methodology and sources

## **>>** The fo

#### The following studies and database provide the basis for this presentation.



- Cockpit offshore wind: approx. 900 wind farms worldwide, over 350 criteria per farm, 32 country and 1.600 company profiles
- Various own studies, e.g.:
  - The Global Market for Offshore Wind Energy: Status Quo and Market Potentials until 2030
  - The market for operation & maintenance in the offshore wind industry until 2030
  - Cost reduction potentials for the offshore wind energy in Germany
  - The market for founding structures in offshore wind energy in Europe until 2030 (2nd ed.)
- Background: wind:research/trend:research
  - since 1997 in the energy sector
  - over 680 studies
  - more than 1.100 references, over 90 % market coverage.







## 2. Framework conditions

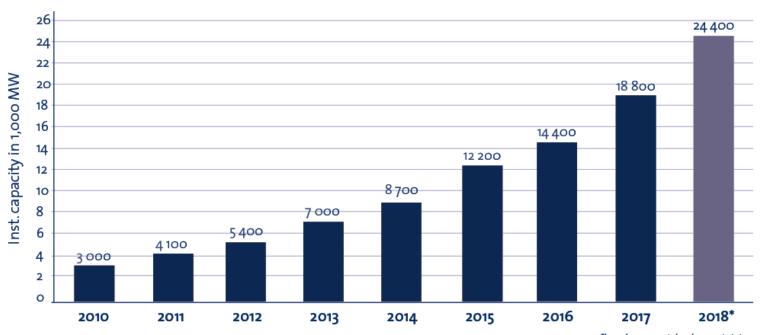
## 2.1 Infrastructural framework – grid connections

This map shows a comprehensive illustration of the transmission system network.










## 3.2 Installed capacity development

The global market for offshore wind is still developing rapidly. Over 5 GW new installed capacity result in a new world record for 2018 (first half year).



Cumulative offshore wind capacity [MW] worldwide 2010 - 2018



\*based on current development status